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ABSTRACT

This paper presents a new approach'to determine the conditions that

ensure diagnosability properties In complex systems. In previous approaches, a

fault-test relationship is assumed and ail diagnosability conditions depend on

both this relationship and the desired diagnosability property. In our approach,

such assumptions are not required, so that diagnosability conditions depend

only on the desired diagnosability property.

This method uses a new system-level fault model having both internal and

observable test outcomes and allowing multiple test outcomes to be associated

with each fault situation. By defining different sets of internal test outcones,

one can represent the desirable diagnostic properties of the model.

In this paper, diagnosability conditions for models possessing morphic pro-

perties ae given. As an example, the conditions are applied to the fault model

of Preparata, Metze and Chien. The results obtained demonstrate that 1) new

diagnosability conditions can be determined and 2) the previous diagnosability

conditions can be reconstructed and applied to a larger class of fault models.

Apo
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1. INrRODUCrION

One of the most challenging problems currently facing the electronics

industry is that of designing systems and tests for the detection and diagnosis of

failures. There are two primary auses of this problem: 1) the increased com-

plexity of systems has greatly increased the number of possible fault situations,

and 2) the reduced accessibility of the circuit due to higher density components

has reduced the availability of test results. Both causes increase the likelihood

of multiple failures.

Previous approaches have addressed this system design and test generation

problem by using a system-level fault model [FRISO] to describe the relation-

ship between fault situations and test outcomes. Such models effectively

reduce the number of fault situations by treating a large aggregation of failures

as a single complex fault situation. Test results from these fault situations are

compactly represented in order to reduce the volume of test data. These

* models are thus vehicles for examining the diagnosability of a system and

improving the selection of tests.

This paper presents a new approach to determine the conditions that

ensure diagnosability properties in complex systems. In previous approaches, a

fault-test relationship is assumed and all diagnosability conditions depend on

both this relationship and the desired diagnosability property. In our approach,

such assumptions are not required, so that diagnosability conditions depend

only on the desired diagnosability property. Since guidelines for system testa-

bility are derived from diagnosability conditions, the guidelines developed from

this new approach are not limited by an assumed fault-test relationship.

The approach uses a new system-level fault model to represent relation-
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ships between faults and test outcomes. By permitting multiple test outcomes

to be associated with each fault situation, this model can represent a lam

aggregation of failures as a single system-level fault situation. Additional strm-

ture is introduced by using both internal and observable test outcomes. Inter-

nal test outcomes play a role analogous to that of state variables in linear sys-

tem models by allowing the representation and analysis of properties that may

not be directly observable. By defining different sets of internal test outcomes,

one can represent the desirable diagnostic properties of the model.

The application of this new approach is demonstrated by determining diag-

nosability conditions for multiple fault diagnosis. Efficient analysis of multiple

faults is provided by models possessing morphic properties. These properties

allow one to determine multiple fault test outcomes from the outcomes of the

single fault components. As an example, we apply the conditions to the fault

model of Preparata, Metze and Chien (PRE67]. The results obtained demon-

strate that 1) new diagnosability conditions can be determined and 2) the previ-

ous diagnosability conditions can be reconstructed and applied to a larger class

of fault models.
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2. FAULT MODEL DEFINITION

For a typical fkult model, a set of fault situations is given and a set of

observable syndromes representing the possible results of a testing procedure is

defined. Thus, the typical fault modelis described by the threetuple

(A,YP,&(.)), where A is a set of fault situations, YP is a set of observable syn-

dromes and (.) is a map from A into Y'.

In contrast to the typical fault model, the model defined in this paper is

described by the quintuple (AZ'Y',G(.)J(.)), where A Is a set of admissible

fault situations, Z P is a set of internal syndromes, YP is a set of observable syn-

dromes, G(.) is a map that relates fault situations and internal syndromes, and

H(.) is a map that relates internal syndromes and observable syndromes.

Clearly, all typical fault models may be represented by choosing R(.) as the

identity map, and letting G(.) - G . It is possible, however, to introduce

additional structure into this model by using various sets of internal syndromes

and maps 1(.). As a result, a specific model has multiple representations,

some of which are more convenient for analyzing and deriving diagnsability

conditions.

We will now define precisely the components of the fault model. To facili-

tate the definition of fault situations, we define a set of distinct elementary fault

situations

E -V1, f2,. . . , fn

where the fault situations ., I - 1,2, ... , n are elementary only in the sense

that there is no need to isolate failures more precisely. As a result, an elemen-

tary fault situation may represent an aggregation of distinct failure modes, each

of which may have a different effect on the overall operation of the system.
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Let Aa be the fmnily of all subsets of E. The empty subset repesems the

nonfaulty mode of the system and is denoted by F0. All possible fault situa-

tions are represented by elements in A,; however, in many cuses it is desirable

to restrict the analysis to a subset of the possible fault situations. Let A C AaV

be the set of admissible fault situations,-that is, it is assumed that only these

fault situations may occur. Often, the admissible fault situations are defined as

the subsets of E that have cadinality less than or equal to an integer r,

< ( - n. In this case, denote A, Q A. as the set of fault situations defined

by

A. FCA.I DFIF .

The union of two fault situations, F, UF, represents the fault situation

consisting of all elementary faults in F and F. Similarly, the intersection

F, nF represents the fault situation consisting of only those elementary faults

common to both F and Fj.

Associated with the system is a testing procedure consisting of a set of p

tests,

T"- {tjq. , t}.

The outcome of test t is denoted by a variable x that talces values in a set Z.

We have assumed that Z is finite, therefore let Z be the set

Z - (0, I, 2,....q-I).

The test outcome '0' represents the behavior of each test In the presence of

fault situation F0. Clearly, in order for the model to provide useful informa-

tion, it is necessay that q 0 2. When q - 2, a test that produces outcome 0'

is samid to was, and a test producing outcome '1' Is said to A.
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The set of test outcomes for a single application of all p tests is represented

by the pktuple

x - (X1, x 2 . .,

This veaor of test outcomes is called an Imenal Wmm of the system and the

space of all intmernal syndrones is denoted by Z.

Failures are assumed to be permanent and deterministic so that a given set

of failures occurring simultaneously always produces a single unique syndrome.

Yet, beause of the complexity allowed in the definition of an elementary fault

situation, more than one syndrome may be associated with a given admissible

fault situation.

The fault model defined in this paper uses a point-to-set map to represent

this uncertainty. Each choice of a set of admissible fault situations and a given

testing procedure defines a unique adnssible fault sftuation - syw vm (AFW)

nuap G(.) from the domain A of admissible fault situations to collections of

non-empty subsets in the range Z P of all possible internal syndromes. The

assumption that the sets E, T, and Z are finite implies that the AFSS map can

be represented in a tabular form by an A S table.

Although the set Z may reflect some internal structure of a testing pro-

cedure, such knowedp may not be available if information is lost in the pro-

cess of observing the syndromes. This occurs, for example, if different test

outcome values representing internal properties of the model cannot be dis-

tinguished by an observer. In order to introduce this concept into the fault

model, let

be the set of possible observations of test outcomes, and let the observation
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process be represented by a map

H(.):Z - Y.

In this paper we consider only those observation processes that can be decom-

posed into observations of individual test outcomes. The observation of a

internal swyne is thus represented by the map

H(x) - (H(xj), H(x 2),..., H(X,)),

where x is a syndrome in Z. In this manner, the primary structure of the

model is described by the AFSS table. The map B.) may be either a point-to-

point or a point-to-set map. In the latter case, it is possible to restrict the

uncertainty associated with a fault situation to the observation map and produce

a point-to-point AESS table by choosing specific internal test outcomes.

Here we have assumed that the nonfaulty situation F0 and each elementary

fault situation are admissible. Thus, A1 - E U (F0) is the greatest lower

bound of A. Also, the internal test outcome '0', which represents the behavior

of a test when the system is nonfaulty, is assumed to be uniquely observable as

the observable outcome '0'. In order to remove trivial models, we have also

assumed that at least one test and more than one internal and more than one

external test outcome exisL Throughout this paper we have assumed the fol-

lowing basic hypothesis.

Hypothesis 2.1: Let S -( A. . YV, G(.), H(.) )be a fault modeL Then,

(i) n-IEI)1
(i) A, CA
(iii) p - IT" I ;o I

(iv) q'IZ 1 2

(v) r-IY 1 2
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(vO G('o) -t(0,0,...0))

(vii) ) - O.

The purpow of deftng such a gineral structumr for fault models is to

allow flexibifty in defin dagnomblity properties and in dertving diagnosabil-

ity condilons. This paper deals pimarly with the one-step v-fault diagnoubil-

ity property [PRE67J, in which all admissible fault situations of cardinality r or

less can be repaired by replacing all faulty and only faulty componnts after

only one application of the tsting procedur.

Dafdt/on 2.2: A fault model S is one-tep r-fub dlagnabk if and only if r is

such that li.vn, and for every pair of fault situations F.Fb in A A. such

that FaPFb,

H(G(Fa)) n H(G(Fb))-.
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3. MORPHIC FAULT MODELS

Without additional structure in the fault model, one cannot simplify the

conditions for one-step r-fault diagnosability beyond the definition. Under the

basic hypothesis, the only inherent structure of the fault models exists in the

set A, by virtue of the union operation. For this set, the union operation is an

associative and commutative binary operation, and the fault situation F0 func-

tions as the unique identity element. This inherent structure is of value when

multiple faults (fault situations of cardinality greater than one) are admissible

and the binary operation on An is in some manner "preserved" by the maps

G(.) and (.). This implies that multiple fault syndromes can be obtained

from the syndromes of their elementary fault components. When this is possi-

ble, the model is said to possess a morphic propty [HAV81].

Morphic properties are of great importance in reducing the complexity of

fault models, since they imply that the analysis of a model's diagnosability and

the development of diagnostic algorithms can be based solely on the knowledge

of the elementary fault syndromes. The presence of a morphic property also

reduces the corplexity of determining and storing the AFSS table by several

orders of magnitude. One should note that the existing graphical fault models

[BAR76, HOL79, PRE67, RUS75a, SOG641 have reduced their complexity in

exactly this way- the graph is actually a description of the elementary fault

situation and syndrome association. Moreover, the complexity of determining

the existence of diagnosability properties and deriving diagnostic algorithms is

also reduced in these models. Evidence for this is found in the existence of

system-level diagnostic algorithms [COR76, KAM75, MEY78, MEY79,

MEYSI, SM1791 that correspond only to models with morphic properties.
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3.1 WEAKLY MORPHIC PROPERTY

The morphic propertes we are considering occur when an associative and

commutative binary operation between internal test outcomes exists, called a

morpoc map.

Deftion 3.1.1: A morphc map is an associative and commutative binary opera-

tion * on the set Z of internal test outcomes.

Let a - (a1, a 2, ... , ap) ard b - (b 1, b ... b,) be syndromes in Z then

a*b is the syndrome defined by

a*b - (al*b1, a 2"b2,..., a,*b,).

Let Q and R be subsets of syndromes in ZP; then Q* R is the subset of syn-

dromes defined by

Q*R -( a*b I (a,b)E QxR).

When all fault situations are admissible and all multiple fault syndromes

can be calculated from the elementary fault syndromes using a morphic map,

the model is said to be weakly morphic.

Definition 3.1.2: A fault model S is weakly morphlc with respect to the morphic

map * if and only if

(i) A-A,, and

(ii) for every Fin A, such that OF I>1,

G(F) - G,,)G J,)*...,GJ, 1 )

IFl
where f,, EF, 1 4j,I F I and UA, .,,-

Fault models that are not weakly morphic may possess a weak/y morp*/c

approxlmatlon from which diagnosability properties can be implied.
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Dfrnigton 3.1.3: The fault model S. - (An, Z', Y', G(.), /.)) is the weakly

morc appoxlmation of a fault model S (A, Z', YP, G(.), 1.)) with respect

to the morphic map * if and only if (i) S is weakly morphic with respect to',

and (ii) G(F)CG.(F) for every Fin A.

3.2 DETECTABLE SUBSETS

Our purpose is to determine those conditions of the fault model that

ensure good diagnosability properties. By considering the class of weakly

morphic fault models, we can reduce this task to that of finding those condi-

tions of elementary fault syndromes and morphic maps that ensure diagnosabil-

ity. It is particularly interesting to examine the consequences of assuming that

the test outcome "V" functions as the identity element of the set Z with respect

to the morphic map.

Definition 3.2.1: A fault model S satisfies the Jrredundancy Hypothesis if and only

if S is weakly morphic with respect to a morphic map * such that 0* a-a for

every a in Z.

As a consequence of this hypothesis, not only do the diagnosability condi-

tions of the fault model depend only on the elementary fault syndromes, but

only on the nonzero outcomes of these syndromes. This is a characteristic of

systems that are not redundant. In such systems, the presence of an elemen-

tary fault situation that always muses a certain test to have a "0" test outcome

can never be detected by that test, even if combined with other fault situations.

The Irredundancy Hypothesis thus represents a strong assumption on the

nature of the fault modeL One should note, however, that all system-level

fault models referred to in this paper have representations satisfying this

hypothesis.
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The IrredUndaM-y Hypothesis leads to an important concept related to dag

nosability conditions for these models. This concept is that the syndromes of a

fault situation can be divided into portions,--ie., subsets of tests,--such that the

test outcomes In a given portion depend only on a subset of elementary faults

in the fault situation. There is thus a decoupling between some elementary

faults and some test outcomes that permits diagnosability conditions to be

simplifed. When the test outcomes in one portion of the syndromes ensure

that all the syndromes of a given fault situation are nonzero, then the subset of

elementary faults associated with that portion of the syndrome is called a detect-

able subset of the fault situation. We will show that a gret dal of

information-and in somec cases, ail information-about the diagnosability of a

fault model can be ascertained by examinig only detectable subsets.

Definiton 3.2.2., Let S be a fault model and let F be an admissible fault situa-

tion. A set B of elementary faults is a detectable subset of F if and only if

(i) B * 4

(ii) B QF

GOU for every a E H(G(F)) an idex kexists, such that Il<k <A where

ak dO and G (f )k-0 for every f CF-B

(iv the only subset of B satisfying (i), 00i and GOii is B itself.

The family of all detectable subsets associated with a fault situation charac-

terizes the detectbility of the fault situation. It is therefore convenient to

introduce the concept of a detectablifty mnap.

Defion 3.2.3:- The detectability mpw A(.) of a fault model S is the point-to-set

map from A to A,, defined for every Fin A by

A(F) -(BEA,, IBis adetctable subse of F)



14

The term Idetectable" in these definitions is appropriate since one can

easily show that a fault situation F is always distinguishable fron the nonfaulty

situation if and only if A(F) 4,. Thus, a necessary condition for a fault model

to be one-step r-fault diagnosable is that A(F)'# for all Fin A nA,.

The importance of defining detectable subsea is that sufficient conditions

for one-step .-fault diagnosability for models satisfying the Irredundancy

Hypothesis have been determined based on these subsets. Given in the follow-

ing sections, these conditions make use of the fact that if B is a detectable sub-

set of a fault situation F, then B is also a detectable subset of every fault situa-

tion P where B Q, CF. This fact justifles condition (iv) of Definition 3.2.2, in

which only the smallest subsets satisfying conditions (i), (ii) and (iii) are

included. One should also note that for a model satisfying the Irredundancy

Hypothesis, if F is a fault situation and BEA(F), then a test k exists such that

G(F)k - G(B)k * G(F-B)k - G(B)k.

From the preceding comments, one would expect that determining the

syndromes in G(F. and deriving diagnosability conditions is easier when

lB k< OF I, because this implies the maximum amount of "decoupling"

between faults and test outcomes. It is therefore not surprising that fault

models exist in which all detectable subsets consist of exactly one elementary

fault situation [PRE67, RUS75a]. Such ases demonstrate that diagnosability

conditions have been greatly simplified.

'1
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4. SUFFICIENT CONDITIONS FOR ONE-STEP

T-FAULT DIAGNOSABILITY

The model and properties defined in the preceding sections can be used to

derive new conditions for one-step r-fault diagnosability. In this section,

sufficient conditions are derived for models satisfying the Irredundancy

Hypothesis. Since all known system-level fault models have representations

satisfying this hypothesis, these conditions have a wide application. As an

example, the conditions are applied to the fault model of Preparata, Metze and

Chien [PRE67] and, in particular, diagnosability conditions based on the

Irredundancy Hypothesis are compared to those derived by Hakimi and Amin

[HAK74]. (The proofs of theorems and lemmas in this section can be found in

Section 6 of this paper.)

4.1 DIAGNOSABILITY THEOREMS

In the following results, we demonstrate that the Irredundancy Hypothesis

relates conditions involving detectable subsets with one-step r-fault diagnosabil-

ity. We provide the basic conditions on the detectability map A(.) that ensure

one-step .-fault diagnosability in Lemma 4.1.1. These conditions can be

simplified using Lemma 4.1.2, and this result is given in Theorem 4.1.3. A

special case of the map A(.) that applies to existing fault models [PRE67,

RUS75aJ is given in Definition 4.1.4 and the resulting diagnosability conditions

are given in Theorem 4.1.5.

The definition of one-step r-fault diagnosability involves comparing the

syndromes for each pair of fault situations in the set Pj(r), where

P( () - [ (FasFb) I Fa.Fb EA , Fe#Fbi

for every r such that 1<r~n. The following lemma uses the pairs of fault
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situations In PI() to relate conditions on the map A(.) with one-step r-faukt

din- _sbiUlty.

Lenm 4.1.1: Let S satisfy the Irredundancy Hypothesis and let r be such that

1rQn. If to every pair (F,Fb) in P1(7) there coresponds a set B in

A(F a UFb) such that either B fFa-0 or B fFb-0, then S is one-step v-fault

diagnosable.

Instead of using the set PI(), one may use a smaller set P2(r) where

P2(t)-{ (F*.Fb I Fa.Fb EA,, iF UFb II,
IF. nFb l-min( IF UFb 1-1, 2r-IF UFb I))

for every r such that I<r<n.

Clearly, P2(v) is always a subset of P1(-). If, for example, n-5, then

IP 2(1)I- IP(1)I-15; however, 1P2(2)I-65 is less than IP,(2)I-120ari

IP 2(3)1-75 is less than 1P1(3)I-325. The following lemma shows that the

conditions of Lemma 4.1.1 can be verified by examining only pairs of fault

situations in P 2(vr).

Lenm 4.1.2. If to every pair (Alb) in P 2(r) there corresponds a set Am

A(Pa UPb) such that either APta- or hr1Pb'-', then to every pair (F..F)

in P1(') there corresponds a set B in A(F UFb) such that either BfnF-w. or

BnFb-0.

Lemmas 4.1.1 and 4.1.2 immediately imply the following theorem.

Theorem 4.1.3: Let S satisfy the Irredundancy Hypothesis and let 7 be such that

1,rivn. If to every pair (Fa,Fb] In P 2(v.) there corresponds a set B in

A(Fa UFb) such that either B flFa,-- or B fnFb-0, then S is one-step r-fault

diagnosable.
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It Is interesting to examine the consequenm of assuming that all detect-

able subsets In A(F) contain one and only one elementary fault situation.

Drjltlon 4.1.4: A map A(.)A-.A,, satisfies the CardinwaityCondition if and only

if lB I-1 for every BE A(F) and every FEA.

As a comequenc of A(.) satisfying the Cardinality Condition, the condi-

tons ensuring one-step 1-fault diagnosability reduce to that of considering only

the wrdinality of A(F).

Theorem 4.1.5: Let S satisfy the lrredurdancy Hypothesis, let A(.) satisfy the

Cardinality Condition and let ' be such that l<,r~n. If

DA(F)l > min(OFI-1,27-IF)

for every FE Aii such that r< IF I<2*"; then S is one-step ir-fault diagnosable.

4.1 APPLICATION TO THE PMC FAULT MODEL
In this section, vw wl consider the foilowing representation of the

Preparata, Metze and Chien (PMC) [PRE67J model based on the graphical

description given in [HAK74].

Definition 4.2.1. Let G(VC) be the graphical description of a PMC fault model.

S - (An, (0,1,2)P, (0,1), G(.), B) is a type 1 representation of this PMC

model if and only if

(i) n - IV I

(ii) p - Ic I

(iii) for every (vi,vj)EC, I k p exists such that for every FE An

2. jEF
GWk- 1,f, , f EF,

0, otherwise
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(v) MO)-O, 1 1 and B(2)-(091).

This reproeation of a PMC fault model implies a one-to-one corespon-

de e between units (vertim) in V and elementary fault situations in A and

between edses in C and tests in T. This representation is meaningful since a

subset of faulty units inV corresponds to every FEA., and H(G(F)) is equal

to the syndromes for this set of faulty units. The foowing lemmas show that a

type 1 representation of a PMC model satisfies the Irredundancy Hypothesis

and A(.) satisfies the Cardinality Condition.

Lenmma 4.2.2: If S is a type I representation of a PMC fault model, then S is

weakly morphic with respect to a morphic map *, where 0.0-0, 0, 1-10,0-1

and 02-12-2*0-2*1-2. (The values 1-1 and 2-2 arenot used in this

representation.)

Coroilary 4.2.3. If s is a type I representation of a PMC fault model, then S

satisfies the Irredunmancy Hypothesis.

Lemma 4.2.4: IfS is a type I representation of a PMC fault model, then for

every FEA,

A(F) E- ( F I 1I<k <p exists where

G(r)k-1 and G()k-O, for all YEF-rfl.

Coroflauv4.2.5: IfS is a type I representation of a PMC fault model, then A(.)

satises the Cardinality Condition,

The preodlng corollaries and Theorm 4.1.5 immediately imply the follow-

ing theorem.

Theorem 4.2.6: Let S be a type I representation of a PMC fault model, and let .

be such that l .Qn. If
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IA )1 > mnIFI-1.2,---IFl)

for eve FEAn such that .< IF 1<27, then S is one-stepr-fault iagnosable.

Using Theorem 4.2.6, one can reconstruct the diagnosability conditions

derived by Haimi and Amin [HAK74] and show that condition I of Theorem

2 [HAK74], that is, n >2,r, is actually implied by the other conditions of that

theorem.

Lemma 4.2.7: Let S be a type I representation of a PMC fault model, and let 7

be such that l<7<jL Every unit in the PMC model is tested by .others (con-

dition 2 [HAK74J) if and only if IA(F)- m ,for every FEA , IF 1-7.

Lama 4.2.8: Let S be a type I representation of a PMC fault model, and let 7

be such that I1<.<n. For every r such that Or<,r, and every XCV such

that Ix I.-n-27+r, Irx Il>r (condition 3 [HAK74]) if and only if

iA(F)l > 2r-IFI for every FEA., 7<IF12v.

Theorem 4.1.5 and Lemmas 4.2.7 and 4.2.8 immediately imply the follow-

ing theorem and show that conditions 2 and 3 [HAK74, Theorem 2] alone are

sufficient for one-step v-fault diagnosability.

Theorem 4.2.9: Let S be a type I representation of a PMC fault model, and let 7

be such that 1<,'Qn. If every unit in the PMC model is tested by . othcrs

(condition 2 [HAK74]), and fr every r such that Or <', and every XCV

such that Ix I-n-2 +r, Irx I>r (condition 3 [HAK74]), then S is one-step

v -fault diagnoable.

The following lemma shows that n > 2 (condition 1 [HAK74]) is Implied

by the conditions of Theorem 4.2.6.

Lenmu 4.2.10: Let S he a type I representation of a PMC fault model, and let r

be such that 1Crvn. If
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IA(F)I > mln(IFl-1,27-IFI)

ror ovry FeA, such that < IF I<2, then n>2,.

In the specal ca of the PMC fault model in which no two units test each

other, the diagniosbility conditions of Theorem 4.2.6 can be further simplfied.

Lema 4.2.11: Let S be a type I represetation of a PMC fault model in which

no two units test each other, and let r be such that I vrn, then

IA(F)II > min(IF1-1,27-IFI1)

for every FEA,, such that r< OF I<2,r if and only if IA(F)I - r for every

FEA such that IF I-r.

Theorem 4.2.6 and Lemmas 4.2.7 and 4.2.11 immediately imply the follow-

ing theorem, which is equivalent to Theorem 1 of [HAK74].

Theorem 4.2.12: Let S be a type I representation of a PMC fault model in

which no two units test each other, and let , be such that 1r' n. If every

unit is tested by r other units, then S is one-step r-fault diagnosable.

S

" .. . . .. i- "l? ' . .... .. , , . ... . . , _ , . , . . i - . .. . .,-- ' , . . . . . . . . . . .. .. .. ,.1
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5. CONCLUSION

Our research presents a new approach for determining dhgnosabillv condf-

tions by using a new fault model having flexible feature. We have shown that

without initially assuming conditions on the fault-tes relationship, dignostic

conditions can be determined that have a wide application and which should

lead to new testability design guidelines.

The results given in this paper were limited to sufficient conditins for

one-step r-fault diagnosability. It can be shown, however, that the approach is

applicable to other types of diagnosability properties and leads to necessary con-

ditions as well. We are currently engaged in research efforts to extend this

approach to transient fault situations.
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6. PROOFS

This section contains the proofs of theorems and lemmas in Sections 4.1

and 4.2. Lemmas 6.1 and 7.3 are used to simplify these proofs.

Lamm a6.1:Let Sbe a fault model and let FEA, then (i) for every bEG(F) an

index k exists such that 1 <k <A where O$H(bk) if and only if

(ii) for every a EH(G (F)) an index k exists such that I <k5 <A where ak dO.

PROOF (0)-0i). Let aEH(G(F)). This implies that b eG(F) exists

such that a EH(b). Therefore, by (1), in index k exists such that 1,~k<p

where 04H(bk), which implies ak 0.

(0i-40i. Let b EG(F). Since H(b )rH(G(F)), by GOi, for every a EH(b) an

index j exists such that l<J<p, where aj dO. Therefore, a (0. ... , 0) for

evury aEH(b). Then, since H(b)~- H(b 1)XH(b 2)X...XH(b.), this implies

that an index k exists such that I <k <A where 04H(bk). E3

Lemma 6.1 and Definition 3.2.2 immediately imply an alternative

definition for detectable subsets. This definition is used in the proofs of Lem-

mas 6.3, 4.1.1 and 4.2.4.

Ccvoilaq 6.2: Let S be a fault model and let F be an admissible fault situation.

A set B of elementary faults is a detecable msboet of F if and only if

(I) B ;d

00i B CF

(iii) for every beG(F) an index k exists such that 1(k<A~ where 04H(bk)

andI G(f )k- 0 for every f EF-B

(GO the only subset of B satisfying (i), (HI) and (iii) is B itself.

The following lemma verifies a statement made at the end of Section 3.2 and is
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used in the proof of Lemma 4.1.2.

Lanmm 6.3: Let S satisfy the Irredundancy Hypothesis, let FEA such that

A(F)0#, and let BEA(F). IfPEA such that Be#rF, then BEA(P).

PROOF: IfP-F, then nrimediately, A(F) -A(.P). Assume that PCF.

Let a EG(P). By the weakly morphic property, a*G(F-P)CG(F). Let

b~a*G(F--). This implies that bEG(F). Since BEA(F), by Corollary 6.2

an index k exists such that I k <, where O$H(bk ) and G(f)k-0 for al

f EF-B. Since F-F C F-B, G(F-)k - O and, by the Irredundancy

Hypothesis bk-ak*O-k. Then, since P-B CF-B, an index k exists such

that 14k <, where 0H(ak) and G(f-)k- 0 for everyfEP-B. Hence,

BE A(). 0

The remainder of this section consists of the proofs of theorems and lem-

mas in SectioM 4.1 and 4.2.

Lenma 4.1.1: Let S satisfy the Irredundarcy Hypothesis and let r be such that

l<.rn. If to every pair (FaF) in P(') there corresponds a set B in

A(F UFb) such that either BnF.U-0 or BnfFbm-,, then S is one-step 7-fault

diagosble.

PRO0. Let (F,.FJEPi(T") and assumM without loss of generality that

FadFo and that BEA(Fa UFb) exists such that B nF--O. Hence,

BCF CF.UFb. LetaEG(F).

Can(1>. F.-FUFb. In this case, A(F) -A(FaUFb), and by Coroflary

6.2, an index k exists such that l k <, where 04H(ak) and G(f)k- 0 for

every f C Fa-B. Then, since Fb C Fa-B, by the Irredundancy Hypothesis

G(Fb)k-' a,
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Case (2): Fe CFa UFb. In this case, by the weakly morphic property,

a*G((FUFb-F.) G(F. UFb). Let bEa*G((FUFb-F,% then

b EG(F, UFb). Since BEA(F. UFb), by Corollary 6.2 an index k exists such

that 1<k<A, where O$H(bk) and G(f )k 0 for every f E(F, UFb)-B. Then,

by the Irredundancy Hypothesis, Fb C (F UFb -B pties G (Fb)k- 0 and

IF, U Fb--F, .(F, UFb --B implies G((F, U Fbi-Fa )k- 0. Therefore, bk-ak,

which implies 04H(ak).

Hence, in both cases (1) and (2) an index k exists such that I <k <,

whwe H(ak)nH(G(Fb)k) -, which implies H(a )fH(G(Fb)) -4. Accord-

ingly, since aCEG(Fa ) is arbitrary, H(G(F))lH(G(Fb)) -.. Since this is

true for any pair in PI(), S is one-step v-fault diagnosable. 0

Lemm 4.1.2: If to every pair (P.,bJ In P2(,r) there corresponds a set A in

A(Fo u b) such that either h noP-# or A ntb"#, then to every pair (F,.Fb}

in Pl(.r) there corresponds a set B in A(F UFb) such that either B nF,-# or

B n Fb -#.

PROOF: We shall prove the contrapositive of this lemma; that is, we wl

assume that there (FaFb)EPI(r) exists such that for every BEA(Fa UFb),

B nF, 4# and B lFb d#, and then construct (P.,Pb)E P2(r) such that for

every h E A(P UP,), hflnt. wudahn.b *#.

Cae (1): IF. UF I <t. Without loss of generlity, let feCFa such that

fa4Fb. Let V-F a UFb and W-V--ua). Since rn, X CE-F. U Fb exists

such that IxI-, -l, UF I. Lett-XUV and b-XUW; then
(P, JljEP2(v.) and F UFbC.a UPb. Byassumption, (4 1 4 A(F6 UFb). There-

fore, by Lamna 6.3, (41)4 A(P, UP,). Consequently, since
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V.~-P U4. b-t. ntb, for every hAe A(P 0b1 ), hflW. nPb,) . This implies

that h nt. * aznl AnPoo o.

Case(2): IF4 LJF1l ,Ir. In this case, I(FUF1 ,)-FI>7-1F.I~O

thus, V Q(FUF, 1-F0 exists such that IV I-vIAF. LLetP..V UF.

Similarly, W r.(Fa UF1,)-F,, exists such that 11W I-v -IF, 1. Let Ab-W UIF.

Consequently, (PaJ IE P2(r) and Fa UF1 ,-A UPb- He*c,

A(Fa UF1 ) mA(aU0). Therefore, if hE ACF U~j,) exists, then

B1E A(Fa UFb). By assumption, then, h rlF6 4 which impume hAnP. * arnd

BflF1 , ~, which implies h nhb o. o

Theorem 4.1I.S:- Let S satisfy the Irreduixiancy Hypothesis, let A(.) satisfy the

Cardinality Condition and let 7 be such that 1~I <<L. If

I A(F) I > min( IF 1-1, 2--IFI1)

for every F EA. such that r< IF 1 27, then S is one-step v-fatult diagnosable.

PROOF: Assume that IA(F)I>min(IFI-1.2v-IAFI) for eveyFEA.

such thatr vIFk2T. Let (FF,EP2(vr); thenr [t~Fa UFb 1<27 and

IFbUFb-mvin(IIF.UFbI-1,2vr-IFJF,,I). LetV'- U R
BfA(F.UFb)

Then lB 1-1 for allIBE A(Fa UF , ) and

I A(F UF) I >Min( I&F,F 1 -, 2,r- IF. UF, 1) imply that

frI>min(IFUFb 1 2, -v-FaUF1 I)-FaflFbI. HencefEexists

suchthatf4&F 1 . SincefEV ifamidonly if AEA(FaUFb), this implies

LtIE A(F. uF1 ) exists such that either (fAr1F-O or Y/~nF 1 , #. Thereforeby

Theoremn 4.1.3, S is one-step v-fault diagnosable. 0

Lenum 4.2.2- If S is a type I representation of a PMC fault model, then S is
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weakly morphic with respect to a morphic map* , where 0* 0-0,

0* 1-1*0-1 and 02-1*2-2-0-2-1-2. (The values 1- 1 and 2*2are not

used in this represntation.)

PROOF: Definition 4.2.1 satisfies Definition 3.1.2(i). Let FEA such that

IF I>1 and let Igk <A Definition 4.2.1(iil) implies that /I, fjEEexist such

that for every fEE,

2, f-f,
G(f)k- 1, f ,- .

0, otherwise

Let * be the morphic map given in this lemma and let

G. (F) - G (,) G (fj) .... G (f,,,).

IF Iwherejf,E F, 1 Jn< IFI! and U 4.,-F. Then, Gs(F")k-2 if ardonyif f, EF,

G.(F)k-1 if and only iff, 4F, fjEF and G. (F)k- 0 ifand only iff,4F, feF.

Thus, G, (F) - G(F) for every FEA. Hence, Definition 4.2.1 satisfies

Definition 3.1.2() and therefore, S is weakly morphic with respect to *. 0

Lerma 4.2.4: If S is a type 1 representation of a PMC fault model, then for

every FE An

A(F)-(fEF I 1<k.p exists where
G(f)k-1 and G(J)k - 0, for all .EF-)).

PROOF: Let FEA. and let
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Q( fE F I 14k 4p exists where
G(f)k- and G(q)k- 0, for all fEF--( I).

Let A(F) be defined accrding to Definition 3.2.2.

Case (1): A(F) - . Definition 3.2.2(iii) implies that a EH(G(F)) exists

such that a-(O,O,...,O). Definition 4.2.1() implies that G(F)k 1 for every

index k such that 14k<p. Therefore, by Definition 4.2.1(ii), for each index k

either G(f)- 0 for every fEF or f4EFexists such that G(A)k-2. Hence,

Q(F) - #, and consequendy, A(F) - Q(F) - .

Case (2): A(F)4#,. Let BE A(F). Let a- G(F% then by Corollary 6.2,

an index k exists such that I k <p, where OH(ak) and G(.)k- 0 for every

.fEF-B. Definition 4.2.1() implies that ak-l. Definition 4.21(iii) implies

that f EF exists such that G fQ)k-1 and G(?)k- 0 for every f E F--j).

Therefore, by Defition 3.2.2(iv), B-J{) and BEQ(F). Hence,

A(F)CQ(F).

Let fI)EQ(F), then fEF, and an index k exists such that I k <A where

G(fJ)k- and G(0)k- 0 for every.)EF-4I}. Definition 4.2.1(iv) implies that

for every a EH(G(F)), ak O and G(f)k- 0 for every.!EF-f. Hence,

(t')EA(F), and thus, Q(F)CA(F). Therefore, A(F) -Q(F). 03

fremva 4.2.7: Let S be a type 1 representation of a PMC fault model, and let r

be such that l(ln. Every unit In the PMC model is tested by . others (con-

dition 2 [HAK74]) if and only if IA(F)I- r for every FEA., IFI- v.

PROOF: LetfEEanddefineT(f)-VEE I (vi,vj)EC, I'j). Then,

each unit in the PMC model that tests unit 1 corresponds to a elementary fault

inT t).
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First, assume every unit In the PMC model is tested by at least '. others.

Then, for every fEE, IT(f)I >,. Let FEA, such that IF I-r, and let fj EF.

Sincef4T(fj) and IT(fj)Ij>,,fETQj) exists such thatf,4F. Therefore,

by Definition 4.2.1(iii) an index k exists such that 1~k<Ap, where G(fi)k-2

and G(f)k-l. Hence, fjEA(F). Since this is true for anyfEF, A(F) -Fand

therefore, IA(F)I-IFI- ,.

Second, assume that a unit in the PMC model exists that is tested by fewer

thanv others. ThenfjEEexists such that IT(j)D<T'. Let

W CE-(fj)UT(fj) such that OW I-r -1-IT(fj)D. Let

F- (fV)UT%)UW; then, IF I- r. By definition 4.2.1(iii), for every index k

such that 1k<.kpand G(fj)k-l,fJ T(f)exists such that G(i.)k-2. Thus,

fEFimplies thatfj4 A(F). Hence, IA(F)A<IFI- r. o

Lema 4.2.8: Let S be a type 1 representation of a PMC fault model, and let r

be such that I14),L For every r such that O<r< and every XCV such that

IXI-n-2r-, IIX I>r (condition 3 [HAK74]) if and only if

IA(F)I > 2,r-IFI foreveryFEA8 , r<IF<I2.

PROOF: Let X V. Then let FE A, be defined such that fJ EF if and only

if vi 4X. Then F is the set of elementary faults corresponding to the vertices in

the cmplement of X. By definition [HAK74], rX- IvX I (v,,vj)EC, v EX).

By Definition 4.2.1(iii), (vj,vj)EC if and only if an index k exists such that

1<k"p where GQj)k-2 and G(.)k-l. Hence, vjE rx if and only if

fjEA(F). Thererore, Irxl-IA(F)I.

First, assume for every r such that Oir <r, and for every X CV such that

Ixl-n-2,+r, that IrxI>r. Let FEA8, such that .<IF1<2,.

Let r-2. -IFI; then O<r<r and Ix I-n-IF I-n-2,+r.
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Then, IA(F)I-Irx I>r-2,-FI.

Second, assume that IA(F)I>2,r -- Flfor ever FE A. such that

•r<IFI<2,. LtXCV and let 0<r<r such that IXI-Mn-2r+r. Then,
IFI-,,-IX I-2,r -r•and r.< I.F <2,'. Hm,,

IrX I-IA(F)I>2r-IFI- r. 13

Lemm 4.2.10: Let S be a type I representation ofa PMC fault model, and let r

be such that 1<,rn. If

IA(F)I > min( IF I-1 2,r --IF I)

for every FEA. such that r- IF 1<2., then n>2r.

PROOF: Note that for a type I representation of a PMC model,

IA(E)I-0. Assume that IA(F)I>min(IF 1-1, 2, -IF I) for every FEA,

such that ?< IF I <2, and assume that n is such that r<n <2,.

If n-,, then IA(E) I- 0<min(n--, 2n-n) -n-I is a contradiction. If

•<n <2,, then IA(E)I- O min(n-1,2,r -n) -2- -n is a contradiction.

Therefore, n >2,r. C3

L mm 4.Z11: Let S be a type I representation of a PMC fault model in which

no two units test each other, and let 7 be such that 1<,rin then,

IA(F)I > min(IF1-1,2,- F i)

for every FEA. such that r< IF I<2,r if and only if IA(F) I - r for every

FEA. suchthat IFI-,.

PROOP. Assumption () IA(F)I-,. ror everyF A. such that

IF I-,. Assumption (2): F. e A. exists such that r< IF. I<2,r and

IA(F.)I <2' -IF. I. omassumptions(I)and(2)wederivea



30

contradictiont thus provins that If assumption (1) holds, asstmption (2) cannot

hold.

Let CE and defneT )- - V E I (,,vj)EC, i:j). The, each uni in

the PMC model that tests unit vj corresponds to a elementary fault in T ).

By Lemma 4.2.7, assumption (1) implies that IT(f) I >" for everyfEE.

Assumption (2) implies that IF,-A(Fo) 1 >2. Lemma 4.2.4 and

Definition 4.2.1(iii) imply that for every fEFa-A(F), T(f).F,. Let

To()-T()n {F--A(F.)) -T(f) - (A(F 0,)hT(f)). Then

IT(f)l 7 -IA(F )I. Consequently,

1 IIT&fI (IFa-A(F)IXT-IIA(Fa)I).
f CF.-A(F.)

(The quantity XEFA(F,) I. (f)I represents the number of distinct tests tk E T

such that fEF-A(F ) and.EF exist where G(f)k-l aid G(?G)k-2.)

If no two units test each other, thenf, ET(f) implies that f4T(Qj').

Therefore,!, E Ta(f) implies that f4 Ta (f). Consequently,

(X F,-A(F, ) IX IF,-A(F ) 1-1)I IT(f)l<2
fEF-A(F.) 2

Combining these bounds yields,

(II- )IX MaAFa)1-1)2 )i(I!Fa-A(F. )lX -I A(F. )1k Y

or equivalently, sina IF.-A(F.)II-IF. I-IIA(F)I,
IA(.)I ;b 2, --AF 1+1,

which contradicts assumption (2).

Therefore, whenever no two units in the PMC model test each other, the
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condikkmn IA(F) I -*r wrevery FCA. such that IF I-, v Impim that

IA(F)I>min(IFI-1.2,r -IF I) for c~wy FEA. such that v(IFI2vr.

The aomm s kumediste 0
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